Distances#
Predefined distances
frobenius(detection, tracked_object)
#
Frobernius norm on the difference of the points in detection and the estimates in tracked_object.
The Frobenius distance and norm are given by:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also#
Source code in norfair/distances.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
mean_euclidean(detection, tracked_object)
#
Average euclidean distance between the points in detection and estimates in tracked_object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also#
Source code in norfair/distances.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
mean_manhattan(detection, tracked_object)
#
Average manhattan distance between the points in detection and the estimates in tracked_object
Given by:
Where \(||a||_1\) is the manhattan norm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
a tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also#
Source code in norfair/distances.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
iou(detection, tracked_object)
#
Intersection over union distance between the bounding boxes.
Assumes that detection.points
(and by consecuence tracked_object.estimate
)
define a bounding box in the form [[x0, y0], [x1, y1]]
.
Normal IoU is 1 when the boxes are the same and 0 when they don't overlap,
to transform that into a distance that makes sense we return 1 - iou
.
Performs checks that the bounding boxes are valid to give better error messages.
For a faster implementation without checks use iou_opt
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
Source code in norfair/distances.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
iou_opt(detection, tracked_object)
#
Optimized version of iou
.
Performs faster but errors might be cryptic if the bounding boxes are not valid.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
Source code in norfair/distances.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
get_distance_by_name(name)
#
Select a distance by name.
Valid names are: ["frobenius", "mean_euclidean", "mean_manhattan", "iou", "iou_opt"]
.
Source code in norfair/distances.py
208 209 210 211 212 213 214 215 216 217 218 219 |
|
create_keypoints_voting_distance(keypoint_distance_threshold, detection_threshold)
#
Construct a keypoint voting distance function configured with the thresholds.
Count how many points in a detection match the with a tracked_object.
A match is considered when distance between the points is < keypoint_distance_threshold
and the score of the last_detection of the tracked_object is > detection_threshold
.
Notice the if multiple points are tracked, the ith point in detection can only match the ith
point in the tracked object.
Distance is 1 if no point matches and approximates 0 as more points are matched.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keypoint_distance_threshold |
float
|
Points closer than this threshold are considered a match. |
required |
detection_threshold |
float
|
Detections and objects with score lower than this threshold are ignored. |
required |
Returns:
Type | Description |
---|---|
Callable
|
The distance funtion that must be passed to the Tracker. |
Source code in norfair/distances.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
create_normalized_mean_euclidean_distance(height, width)
#
Construct a normalized mean euclidean distance function configured with the max height and width.
The result distance is bound to [0, 1] where 1 indicates oposite corners of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
height |
int
|
Height of the image. |
required |
width |
int
|
Width of the image. |
required |
Returns:
Type | Description |
---|---|
Callable
|
The distance funtion that must be passed to the Tracker. |
Source code in norfair/distances.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|