Camera Motion#
Camera motion stimation module.
CoordinatesTransformation
#
Bases: ABC
Abstract class representing a coordinate transformation.
Detections' and tracked objects' coordinates can be interpreted in 2 reference:
- Relative: their position on the current frame, (0, 0) is top left
- Absolute: their position on an fixed space, (0, 0) is the top left of the first frame of the video.
Therefore, coordinate transformation in this context is a class that can transform coordinates in one reference to another.
Source code in norfair/camera_motion.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
TransformationGetter
#
Bases: ABC
Abstract class representing a method for finding CoordinatesTransformation between 2 sets of points
Source code in norfair/camera_motion.py
41 42 43 44 45 46 47 48 49 50 |
|
TranslationTransformation
#
Bases: CoordinatesTransformation
Coordinate transformation between points using a simple translation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
movement_vector |
np.ndarray
|
The vector representing the translation. |
required |
Source code in norfair/camera_motion.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
TranslationTransformationGetter
#
Bases: TransformationGetter
Calculates TranslationTransformation between points.
The camera movement is calculated as the mode of optical flow between the previous reference frame and the current.
Comparing consecutive frames can make differences too small to correctly estimate the translation, for this reason the reference frame is kept fixed as we progress through the video. Eventually, if the transformation is no longer able to match enough points, the reference frame is updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
float
|
Before calculatin the mode, optiocal flow is bucketized into bins of this size. |
0.2
|
proportion_points_used_threshold |
float
|
Proportion of points that must be matched, otherwise the reference frame must be updated. |
0.9
|
Source code in norfair/camera_motion.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
HomographyTransformation
#
Bases: CoordinatesTransformation
Coordinate transformation beweent points using an homography
Parameters:
Name | Type | Description | Default |
---|---|---|---|
homography_matrix |
np.ndarray
|
The matrix representing the homography |
required |
Source code in norfair/camera_motion.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
HomographyTransformationGetter
#
Bases: TransformationGetter
Calculates HomographyTransformation between points.
The camera movement is represented as an homography that matches the optical flow between the previous reference frame and the current.
Comparing consecutive frames can make differences too small to correctly estimate the homography, often resulting in the identity. For this reason the reference frame is kept fixed as we progress through the video. Eventually, if the transformation is no longer able to match enough points, the reference frame is updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
method |
Optional[int], optional
|
One of openCV's method for finding homographies.
Valid options are: |
None
|
ransac_reproj_threshold |
int, optional
|
Maximum allowed reprojection error to treat a point pair as an inlier. More info in links below. |
3
|
max_iters |
int, optional
|
The maximum number of RANSAC iterations. More info in links below. |
2000
|
confidence |
float, optional
|
Confidence level, must be between 0 and 1. More info in links below. |
0.995
|
proportion_points_used_threshold |
float, optional
|
Proportion of points that must be matched, otherwise the reference frame must be updated. |
0.9
|
See Also#
Source code in norfair/camera_motion.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
MotionEstimator
#
Estimator of the motion of the camera.
Uses optical flow to estimate the motion of the camera from frame to frame. The optical flow is calculated on a sample of strong points (corners).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_points |
int, optional
|
Maximum amount of points sampled. More points make the estimation process slower but more precise |
200
|
min_distance |
int, optional
|
Minimum distance between the sample points. |
15
|
block_size |
int, optional
|
Size of an average block when finding the corners. More info in links below. |
3
|
transformations_getter |
TransformationGetter, optional
|
An instance of TransformationGetter. By default |
None
|
draw_flow |
bool, optional
|
Draws the optical flow on the frame for debugging. |
False
|
flow_color |
Optional[Tuple[int, int, int]], optional
|
Color of the drawing, by default blue. |
None
|
quality_level |
float, optional
|
Parameter characterizing the minimal accepted quality of image corners. |
0.01
|
Examples:
>>> from norfair import Tracker, Video
>>> from norfair.camera_motion MotionEstimator
>>> video = Video("video.mp4")
>>> tracker = Tracker(...)
>>> motion_estimator = MotionEstimator()
>>> for frame in video:
>>> detections = get_detections(frame) # runs detector and returns Detections
>>> coord_transformation = motion_estimator.update(frame)
>>> tracked_objects = tracker.update(detections, coord_transformations=coord_transformation)
See Also#
For more infor on how the points are sampled: OpenCV.goodFeaturesToTrack
Source code in norfair/camera_motion.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
|
update(frame, mask=None)
#
Estimate camera motion for each frame
Parameters:
Name | Type | Description | Default |
---|---|---|---|
frame |
np.ndarray
|
The frame. |
required |
mask |
np.ndarray, optional
|
An optional mask to avoid areas of the frame when sampling the corner.
Must be an array of shape In general, the estimation will work best when it samples many points from the background; with that intention, this parameters is usefull for masking out the detections/tracked objects, forcing the MotionEstimator ignore the moving objects. Can be used to mask static areas of the image, such as score overlays in sport transmisions or timestamps in security cameras. |
None
|
Returns:
Type | Description |
---|---|
CoordinatesTransformation
|
The CoordinatesTransformation that can transform coordinates on this frame to absolute coordinates or vice versa. |
Source code in norfair/camera_motion.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
|