Distances#
Predefined distances
frobenius(detection, tracked_object)
#
Frobernius norm on the difference of the points in detection and the estimates in tracked_object.
The Frobenius distance and norm are given by:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also
Source code in norfair/distances.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
mean_euclidean(detection, tracked_object)
#
Average euclidean distance between the points in detection and estimates in tracked_object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
A tracked object |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also
Source code in norfair/distances.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
mean_manhattan(detection, tracked_object)
#
Average manhattan distance between the points in detection and the estimates in tracked_object
Given by:
Where \(||a||_1\) is the manhattan norm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detection |
Detection
|
A detection. |
required |
tracked_object |
TrackedObject
|
a tracked object. |
required |
Returns:
Type | Description |
---|---|
float
|
The distance. |
See Also
Source code in norfair/distances.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
iou(candidates, objects)
#
Calculate IoU between two sets of bounding boxes. Both sets of boxes are expected
to be in [x_min, y_min, x_max, y_max]
format.
Normal IoU is 1 when the boxes are the same and 0 when they don't overlap,
to transform that into a distance that makes sense we return 1 - iou
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
candidates |
ndarray
|
(N, 4) numpy.ndarray containing candidates bounding boxes. |
required |
objects |
ndarray
|
(K, 4) numpy.ndarray containing objects bounding boxes. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
(N, K) numpy.ndarray of |
Source code in norfair/distances.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
|
get_distance_by_name(name)
#
Select a distance by name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
A string defining the metric to get. |
required |
Returns:
Type | Description |
---|---|
Distance
|
The distance object. |
Source code in norfair/distances.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
create_keypoints_voting_distance(keypoint_distance_threshold, detection_threshold)
#
Construct a keypoint voting distance function configured with the thresholds.
Count how many points in a detection match the with a tracked_object.
A match is considered when distance between the points is < keypoint_distance_threshold
and the score of the last_detection of the tracked_object is > detection_threshold
.
Notice the if multiple points are tracked, the ith point in detection can only match the ith
point in the tracked object.
Distance is 1 if no point matches and approximates 0 as more points are matched.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keypoint_distance_threshold |
float
|
Points closer than this threshold are considered a match. |
required |
detection_threshold |
float
|
Detections and objects with score lower than this threshold are ignored. |
required |
Returns:
Type | Description |
---|---|
Callable
|
The distance funtion that must be passed to the Tracker. |
Source code in norfair/distances.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
|
create_normalized_mean_euclidean_distance(height, width)
#
Construct a normalized mean euclidean distance function configured with the max height and width.
The result distance is bound to [0, 1] where 1 indicates oposite corners of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
height |
int
|
Height of the image. |
required |
width |
int
|
Width of the image. |
required |
Returns:
Type | Description |
---|---|
Callable
|
The distance funtion that must be passed to the Tracker. |
Source code in norfair/distances.py
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|